

LA TRASPARENZA È IL NOSTRO OBIETTIVO.

Come posso vedere l'impronta ecologica di un veicolo? La risposta sta nella BMW Vehicle Footprint. Quattro criteri chiave di sostenibilità e un ecobilancio dettagliato, certificato dal TÜV, forniscono una visione completa. Chiara e trasparente. In modo da poter prendere una decisione informata.

Influenza sul clima. Perché osserviamo attentamente le emissioni nell'intero ciclo di vita.

Ogni veicolo lascia un'impronta di $\mathrm{CO_2e}$ durante l'intero ciclo di vita. Questo ciclo di vita comprende l'approvvigionamento e la produzione, l'utilizzo e il riciclaggio. Le equivalenti di $\mathrm{CO_2}$ ($\mathrm{CO_2e}$) sono un'unità di misura necessaria per esprimere in modo uniforme l'impatto sul clima dei diversi gas serra, ad es. del metano. Le emissioni della catena di fornitura, della logistica dei trasporti e della fornitura di energia a monte sono espresse in $\mathrm{CO_2e}$. Per il conteggio dell'elettricità verde si tiene conto sia della corrente proveniente da impianti di generazione di energia rinnovabile propri e da contratti con fornitori diretti nonché di corrente ricavata da fonti d'origine certificata.

Efficienza. Perché meno è meglio: ottimizzazione dei consumi e dell'autonomia.

BMW EfficientDynamics è sinonimo di soluzioni innovative per ottimizzare il consumo di carburante e l'autonomia di generazioni di veicoli. Fattori importanti per un maggiore piacere di guida con consumi ridotti e una maggiore autonomia sono, da un lato, la struttura leggera grazie a un mix ottimizzato di materiali, dall'altro, le favorevoli proprietà aerodinamiche che aumentano l'efficienza. Ciò ottimizza i consumi e ha un effetto positivo sull'autonomia. Tuttavia, anche il guidatore è un fattore di influenza fondamentale. A seconda del percorso e della situazione del traffico, è possibile risparmiare energia adottando uno stile di guida efficiente.

Economia circolare. Perché riciclare è meglio: conservare le risorse con materiali riciclati.

RE:THINK, RE:DUCE, RE:USE, RE:CYCLE. Seguiamo questi principi dell'economia circolare per preservare le risorse naturali e mantenere i materiali a lungo nel ciclo con la stessa alta qualità. Oltre ai materiali primari, utilizziamo anche materiali secondari nei nuovi componenti. Inoltre, stiamo già aumentando la riciclabilità dei componenti attraverso il processo di progettazione e lo sviluppo dei prodotti.

Catena di fornitura. Perché per noi è importante: requisiti ambientali e sociali nella catena di fornitura.

Per il BMW Group, la responsabilità sociale svolge un ruolo importante all'interno dell'azienda e nella catena di fornitura. Il rispetto dei diritti umani e degli standard ambientali applicabili lungo la catena di fornitura globale dei nostri veicoli è il nostro obiettivo da anni. Per raggiungere questo obiettivo, ci affidiamo alla cooperazione, a un catalogo di misure e all'interconnessione di corsi di formazione, accordi contrattuali, certificazioni e controlli tramite questionari o audit. Riconosciamo la necessità di azioni specifiche sulla base di una regolare analisi dei rischi, che utilizziamo per identificare le materie prime il cui approvvigionamento e la cui lavorazione sono associati a maggiori rischi per le persone e l'ambiente.

INDICE.

Contenuto
1. Informativa sul veicolo oggetto dello studio sull'ecobilancio
2. Ecobilancio
2.1. Materiali utilizzati per il veicolo
2.2. Potenziale di riscaldamento globale durante il ciclo di vita
2.3. Potenziale di riscaldamento globale a confronto
2.4. Provvedimenti per la riduzione del potenziale di riscaldamento globale
2.5. Altre categorie di impatto sull'ambiente
3. Produzione e fabbisogno d'acqua
4. Possibilità di riciclaggio al termine del ciclo di vita
5. Responsabilità sociale nella catena di fornitura
6. Valutazione e conclusioni

1. INFORMATIVA SUL VEICOLO OGGETTO DELLO STUDIO SULL'ECOBILANCIO.

Dettagli tecnici relativi al veicolo oggetto dello studio sull'ecobilancio	BMW i5 eDrive40
Tipo di trasmissione	Elettrica
Cambio	1 rapporto, automatico
Tipo di trazione	Trazione posteriore
Potenza in kW (CV)	250 (340)
Velocità massima in km/h	193
Capacità batteria (lordo/netto) in kWh	83,9/81,2
Peso veicolo in kg	2.176
Consumo di energia, WLTP in ciclo misto in kWh/100 km	17,7
Emissioni di CO ₂₁ WLTP in ciclo misto in g/km	0
Classe CO ₂ ¹	A

La nuova BMW i5 indica l'inizio di una nuova epoca. È la prima berlina executive totalmente elettrica di BMW. Un biglietto da visita per tutti coloro che vogliono accelerare i cambiamenti. Una mobilità divertente e fonte d'ispirazione.

Il modo in cui utilizziamo le risorse svolge un ruolo centrale per il BMW Group. Vogliamo continuare a utilizzare le materie prime secondo i principi dell'economia circolare.

Le celle della batteria ad alto voltaggio della BMW i5 eDrive40 sono realizzate, ad esempio, con circa il 10% di materiale secondario, di cui il 50% è nichel secondario. Per i cerchi in lega leggera viene utilizzato circa il 45% di alluminio secondario. Le plastiche nel rivestimento del sottoscocca contengono circa il 25% di materiale secondario. Con riferimento all'intero veicolo, la percentuale di materia prima secondaria della BMW i5 eDrive40 è pari a circa il 21%. Questi valori sono stati calcolati per il veicolo selezionato dello studio sull'ecobilancio al momento dell'inizio della produzione nel 2023, sia sulla base di attestazioni specifiche dei fornitori, sia sulla base dei valori medi del settore e includono gli scarti di produzione.

Il modello totalmente elettrico per una mobilità locale priva di emissioni.

'In conformità con l'ordinanza sull'etichettatura del consumo energetico delle autovetture (PKW-EnVKV) secondo la legge tedesca

2. ECOBILANCIO.

Pensare a lungo termine ed agire in modo orientato al cliente. Questi sono gli obiettivi fondamentali del BMW Group, che sono ancorati nella strategia della nostra azienda, che presuppone l'attuazione contemporanea e di pari importanza di obiettivi ambientali, economici e sociali. La valutazione degli effetti sull'ambiente di una BMW fa parte della nostra responsabilità del prodotto. Con l'ausilio di un ecobilancio osserviamo l'intero ciclo di vita di un veicolo e dei suoi componenti.

Gli effetti rilevanti per l'ambiente e i potenziali di miglioramento vengono individuati in modo trasparente già nella fase di sviluppo di un veicolo. Le decisioni prese tengono conto fin dall'inizio degli aspetti ambientali.

L'ecobilancio della BMW i5 eDrive40 è stato creato all'inizio della produzione nel luglio 2023, modellato con l'ausilio del software LCA for Experts 10 (dati aggiornati al: 2023) della società Sphera e completato con le percentuali di materiale secondario e d'impiego di energie rinnovabili attraverso i dati specifici dei fornitori. Se non diversamente specificato, tutti i fattori di emissione utilizzati sono tratti dal software.

Si tiene conto di un chilometraggio di 200.000 km nel ciclo di marcia armonizzato a livello mondiale (WLPT). Le celle nella batteria ad alto voltaggio (HVS) sono dimensionate per la durata della vettura. Non è prevista una sostituzione parziale o totale nell'ambito del chilometraggio considerato.

La rappresentazione in modo comparabile dei risultati e delle applicazioni di processo è particolarmente impegnativa nel caso di prodotti complessi come i veicoli. Esperti esterni verificano la corrispondenza con la norma ISO 14040/44. Ad eseguire questa verifica è l'Istituto di controllo indipendente TÜV Rheinland Energy & Environment GmbH.

Per l'ecobilancio della BMW i5 eDrive40 si utilizza il metodo CML-2001, che è stato sviluppato dall'Istituto di Scienze Ambientali dell'Università di Leiden (Paesi Bassi) nel 2001. Questo metodo per la valutazione dell'impatto ambientale viene utilizzato in molti ecobilanci nel settore automobilistico. Il suo obiettivo è la rappresentazione di tutti i flussi di materiale e di energia tra l'ambiente e il sistema di prodotto nel ciclo di vita.

DICHIARAZIONE DI VALIDITÀ DELLO STUDIO SULL'ECOBILANCIO.

Validation

TÜV Rheinland Energy GmbH confirms that a critical review of the life cycle assessment (LCA) study of BMW AG, Petuelring 130, 80788 München for the following passenger car:

BMW i5 eDrive40 - 2023 model year

was performed.

Proof has been provided that the requirements of the international standards

- ISO 14040:2006 + A1:2020: Environmental management life cycle assessment principles and framework
- ISO 14044:2006 + A1:2018 + A2:2020: Environmental management life cycle assessment requirements and guidelines
- ISO/TS 14071:2014: Environmental management life cycle assessment critical review processes and reviewer competencies: additional requirements and guidelines to ISO 14044

are fulfilled.

Results:

- The LCA study was carried out according to the international standards ISO 14040:2006 + A1:2020 and ISO 14044:2006 + A1:2018 + A2:2020. The methods used and the modelling of the product system correspond to the state of the art. They are suitable to fulfill the goals stated in the study. The report is comprehensive and provides a transparent description of the framework of the LCA study.
- The assumptions used in the LCA study especially energy consumption based on the current WLTP (Worldwide harmonized Light vehicles Test Procedure) were verified and discussed.
- The assessed samples of data and environmental information included in the LCA study are plausible.

Review process and level of detail:

Verification of input data and environmental information as well as the check of the LCA process was performed in course of a critical data review. The data review considered the following aspects:

- · Check of the applied methods and the product model,
- Inspection of technical documents (e.g. type approval documents, parts lists, supplier information, measurement results, etc.) and
- . Check of LCA input data (e.g. weights, materials, energy consumption, emissions, etc.).

Cologne, 02nd August 2023

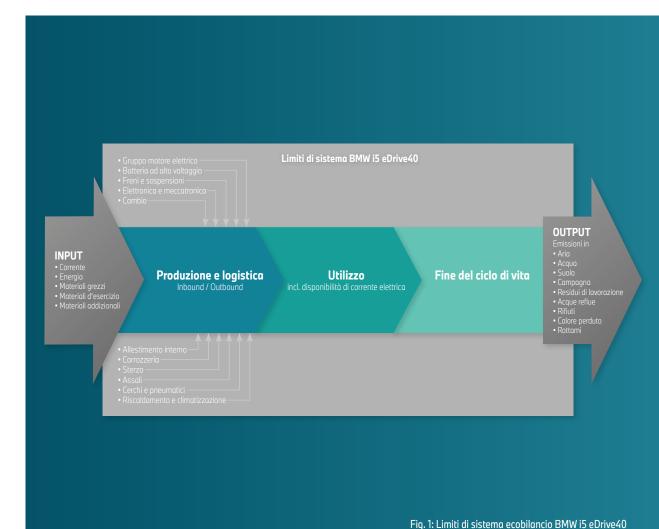
D. Weicehunger

Norbert Heidelmann

Department Manager for Carbon and Energy Services

Resnonsibilitie

Sole liability for the content of the LCA rests with BMW AG. TÜV Rheinland Energy GmbH was commissioned to review said LCA study for compliance with the methodical requirements, and to verify and validate the correctness and credibility of the information included therein.


2. ECOBILANCIO.

Il limite di sistema dell'ecobilancio è rappresentato nella figura 1 e va dall'estrazione di materie prime fino al riciclaggio al termine del ciclo di vita del veicolo, passando per la produzione dei materiali e dei componenti, la logistica e la fase di utilizzo.

Si tiene conto anche di scarti di produzione riutilizzabili dei processi produttivi. Essi comprendono, ad esempio, gli sfridi da punzonatura risultanti dalla produzione di componenti in acciaio o alluminio. I materiali impiegati per la fabbricazione di attrezzi e la costruzione di luoghi di produzione non rientrano in questo ecobilancio.

Per quanto concerne la fase di utilizzo si fa ricorso ai record di dati per mix elettrici europei disponibilial pubblico concernenti la disponibilità di corrente elettrica all'inizio della produzione. Le celle nella batteria ad alto voltaggio sono dimensionate per la durata del veicolo. Nell'ambito dell'analisi non si tiene conto della manutenzione dei veicoli.

Nell'ambito dell'ecobilancio la fase di riutilizzo (end-of-life) viene rappresentata secondo processi standard di svuotamento di liquidi d'esercizio e smontaggio ai sensi della Direttiva sull'omologazione di veicoli 2005/64/CE e della Direttiva sui veicoli fuori uso 2000/53/CE, nonché secondo la separazione di metalli nel processo di rottamazione e il recupero energetico delle parti non metalliche (frazione leggera da rottamazione). Non vengono rilasciati crediti ecologici per componenti o materiali riutilizzabili o riciclabili o per il recupero di energia attraverso l'utilizzo di energia. Si tiene conto solo dei costi e delle emissioni dei processi di recupero. Per il recupero delle batterie ad alto voltaggio lo smontaggio dei componenti è stato fissato come limite di sistema e non sono stati emessi ulteriori crediti.

2.1. MATERIALI UTILIZZATI PER IL VEICOLO.

I dati relativi al prodotto come dati dei componenti e dei materiali, quantità, spese di produzione e logistica sono dati primari rilevati da BMW Group.

Per l'ecobilancio si considera il peso come "massa in stato pronto per la marcia senza guidatore e bagaglio più l'equipaggiamento in pelle sintetica". Questo peso è rappresentato attraverso un'estrazione dei componenti del veicolo e della composizione dei relativi materiali da un elenco pezzi specifico per il veicolo.

Nella figura 2 viene rappresentata la composizione dei materiali della BMW i5 eDrive40.

Il peso della BMW i5 eDrive40 è dato per il 32,0 % da acciaio e materiali ferrosi e per il 24,0 % da leghe leggere ottenute prevalentemente da alluminio. Anche il gruppo dei polimeri ha una percentuale elevata del 19,0 %. Le celle, incluso l'elettrolito della batteria ad alto voltaggio, rappresentano il 15,0 % del peso. La chimica delle celle corrisponde a quella dell'ultima generazione delle batterie agli ioni di litio. Altri materiali sono pari al 2,5 %. I materiali non ferrosi sono pari al 3,7 %. I polimeri di processo rappresentano l'1,6 %. I materiali d'esercizio rappresentano circa il 1,7 %. Comprendono gli oli e il liquido dei freni, il refrigerante e l'acqua di lavaggio. La percentuale dei metalli speciali, come lo stagno, è di gran lungainferiore all'1 %.

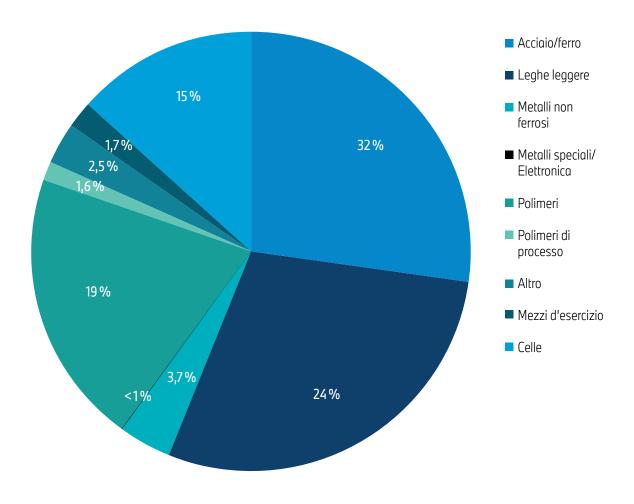


Fig. 2: Composizione dei materiali della BMW i5 eDrive40 all'inizio della produzione. I valori indicati possono presentare differenze di arrotondamento.

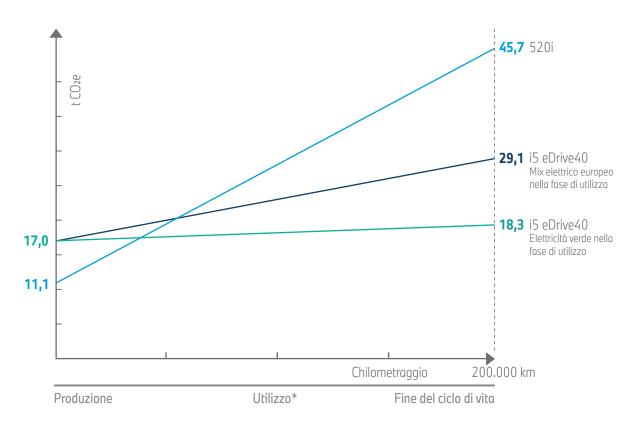
2.2. POTENZIALE DI RISCALDAMENTO GLOBALE DURANTE IL CICLO DI VITA.

Questo ecobilancio tiene conto del potenziale di riscaldamento globale (Global Warning Potential, GWP) della BMW i5 eDrive40 durante l'intero ciclo di vita. Al fine di valutare l'impatto sul clima, si tiene conto delle emis sioni a effetto serra che sono legate alla catena di fornitura delle materie prime, alla logistica di trasporto e alla produzione negli stabilimenti BMW, all'utilizzo e al recupero o allo smaltimento del prodotto. La valutazione del GWP è focalizzata momentaneamente sul settore automobilistico.

La figura 3 mostra il potenziale di riscaldamento globale della BMW i5 eDrive40 durante il suo ciclo di vita e quale impatto ha l'utilizzo al 100 % di energie rinnovabili nella fase di utilizzo.

La BMW i5 eDrive40 considerata per questo ecobilancio viene consegnata ai clienti finali con 17 t di ${\rm CO_2e}$, di cui ca. 1 t sono imputabili alla logistica in entrata e in uscita. La logistica in entrata comprende tutti i trasporti di merci di fornitori agli stabilimenti di produzione e il traffico all'interno dello stabilimento. La logistica in uscita dallo stabilimento nei mercati mondiali viene determinata sulla base delle pianificazioni relative al volume previsto.

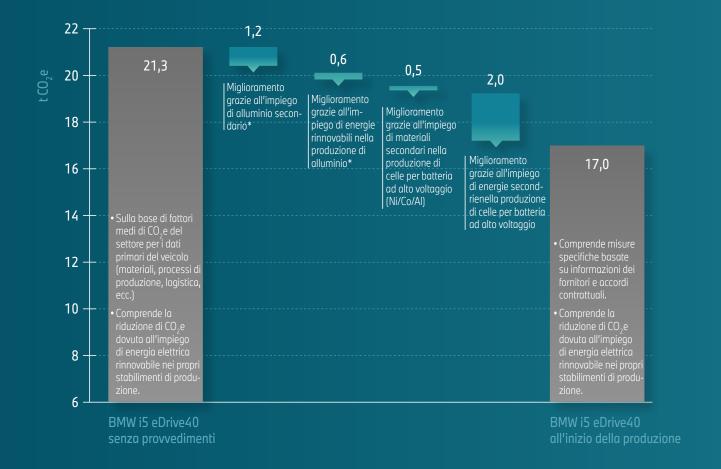
Per il calcolo della fase di utilizzo della BMW i5 eDrive40 si tiene conto del consumo WLTP (valore medio del range di valori WLTP) e di un chilometraggio di 200.000 km.


Il modo in cui viene generata l'elettricità utilizzata influisce considerevolmente sull'impatto climatico della vettura. Nel mix elettrico europeo considerato ciò corrisponde a 11,5 t CO_2 e. Nel caso di ricarica del veicolo con elettricità proveniente da fonti rinnovabili, la produzione di corrente corrisponde a solo 0,7 t delle emissioni totali nel ciclo di vita. Considerando le emissioni di CO_2 e per la produzione degli impianti di generazione di energia, questo valore è diverso da zero.

2.3. POTENZIALE DI RISCALDAMENTO GLOBALE A CONFRONTO.

La fabbricazione della BMW i5 eDrive40 causa 17,0 t di CO_2 e. Ciò significa che durante la fabbricazione causa una quantità superiore rispetto a una BMW 520i con motore a combustione. Il motivo principale è dovuto ai processi di produzione della batteria ad alto voltaggio che richiedono molta energia.

Tuttavia, oltre che nella produzione, il consumo nella fase di utilizzo di entrambi i veicoli ha un impatto considerevole sull'ambiente. Con un chilometraggio di 200.000 km e caricata con il mix elettrico europeo nella fase di utilizzo, le emissioni totali della BMW i5 eDrive40 pari a 29,1t $\rm CO_2e$ sono nettamente al di sotto delle 45,7 t di $\rm CO_2e$ emesse dalla BMW 520i.


La carica con elettricità verde consente di ridurre da 11,5 t a 0,7 t le emissioni di CO₂e nella fase di utilizzo di un veicolo elettrico.

^{*}Dati di consumo secondo omologazione del tipo (valore medio del range di valori WLTP)

Fig. 4: Classificazione del potenziale di riscaldamento globale della BMW i5 eDrive40 in relazione alla BMW 520i.

2.4. PROVVEDIMENTI PER LA RIDUZIONE DEL POTENZIALE DI RISCALDAMENTO GLOBALE.

In figura 5 sono illustrati i provvedimenti che contribuiscono a migliorare di circa il 20 % il potenziale di riscaldamento globale nella fase di produzione rispetto ai valori medi del settore secondo il software e il database LCA for Experts 10. L'impiego di fonti di energia rinnovabile nella produzione interna non è stato indicato separatamente come provvedimento ed è già incluso nelle 21,3 t di CO₂e.

Tenuto conto di questi provvedimenti, il valore di CO₂e al momento della consegna del veicolo è di 17.0 t.

I valori indicati possono presentare differenze di arrotondamento.

Per il raggiungimento degli obiettivi di sostenibilità nella fase di produzione della BMW i5 eDrive40 sono stati adottati diversi provvedimenti.

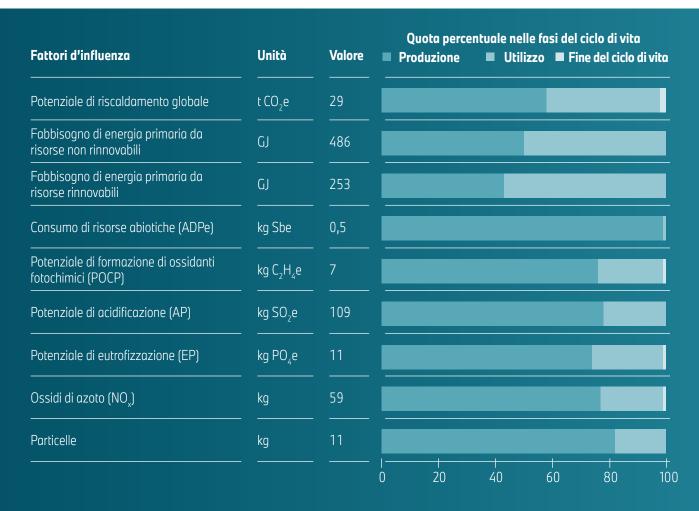

 $[\]hbox{* Supporto albero di trasmissione, ruote, pinza freno, carrozzeria, scatola batteria ad alto voltaggio, etc.}\\$

Fig. 5: Influenza degli obiettivi di sviluppo sul potenziale di riscaldamento globale della fase di produzione della BMW i5 eDrive40

2.5. ALTRE CATEGORIE D'IMPATTO SULL'AMBIENTE.

Nella tabella 1 viene indicato in CO₂e il potenziale di riscaldamento globale della BMW i5 eDrive40. Sono inoltre indicate ulteriori categorie di considerevole impatto sull'ambiente con valori percentuali nelle fasi del ciclo di vita:

- Il fabbisogno di energia primaria ricavata da risorse rinnovabili e non rinnovabili. Anche l'energia primaria necessaria (p. es. carbone, radiazione solare) per la generazione di energia e per la produzione di materiale.
- Il fattore abiotico ossia il consumo di risorse che non hanno vita indica la penuria di risorse. Più un elemento è scarso e più il consumo è elevato, tanto più elevato è l'apporto al potenziale di esaurimento abiotico ADPe.
- Il potenziale di formazione di ossidanti fotochimici (PCOP) esprime la formazione di ozono a livello del suolo (p. es. smog estivo) dovuta alle emissioni.
- Il potenziale di acidificazione (AP) quantifica e valuta l'effetto acidificante di emissioni speciali.
- Il potenziale di eutrofizzazione (EP) descrive l'apporto indesiderato di sostanze nutritive nelle acque o nel suolo (eccesso di fertilizzante).
- Gli ossidi di azoto (NO_x) contribuiscono tra l'altro alla formazione di polveri sottili e ozono. L' NO_2 è ad esempio un gas lacrimogeno.
- Le particelle riuniscono corpuscoli di diverse dimensioni.

Tab. 1: Categorie di impatto sull'ambiente con valori percentuali nelle fasi del ciclo di vita della BMW i5 eDrive40

3. PRODUZIONE E FABBISOGNO D'ACQUA.

Gli stabilimenti di produzione della BMW i5 eDrive40 sono a Dingolfing, Landshut e Berlino. Il montaggio dell'intero veicolo e il montaggio dei componenti elettrici della trasmissione avviene nella sede di Dingolfing. Qui viene fabbricato il gruppo composto da macchina elettrica, elettronica di potenza e cambio per macchina elettrica e viene assemblato il veicolo. I singoli componenti della carrozzeria provengono dallo stabilimento di Landshut, i dischi dei freni dallo stabilimento di Berlino.

Tutti e tre gli stabilimenti ricavano l'intero fabbisogno esterno di energia elettrica da fonti rinnovabili, utilizzando, tra l'altro, certificati di origine. Il BMW Group acquista esclusivamente certificati di energie rinnovabili, la cui generazione non viene sovvenzionata. In questo modo si esclude una doppia imputazione ("double-counting"). Inoltre, viene generata elettricità da fonti energetiche rinnovabili anche all'interno dello stabilimento. Per coprire il fabbisogno di calore si utilizza gas metano, olio combustibile e calore proveniente da impianti di co-generazione (KWK).

Molti processi di produzione come la verniciatura dei veicoli richiedono molta acqua. Nel 2022 il consumo medio di acqua potabile di tutte le sedi di produzione mondiali è stato pari a 1,90 m³* per veicolo nuovo.

*Fonte: https://www.bmwgroup.com/en/report/2022/index.html I dati relativi al fabbisogno di acqua non fanno parte dell'ecobilancio.

4. POSSIBILITÀ DI RICICLAGGIO AL TERMINE DEL CICLO DI VITA.

BMW tiene conto degli impatti sull'ambiente lungo tutto il ciclo di vita di un veicolo nuovo. Dalla fabbricazione al recupero passando per l'utilizzo e il service. Un riciclaggio efficiente è pianificato già nella fase di sviluppo e produzione. Il "Design for Recycling" viene applicato e assicura un riciclaggio efficiente di veicoli da rottamare. Un esempio è costituito dall'estrazione totale e semplice dei materiali d'esercizio (ad es. il refrigerante).

Naturalmente, le automobili costruite da BMW soddisfano a livello internazionale i requisiti di legge in materia di riciclaggio di veicoli usati, componenti e materiali. In riferimento all'intero veicolo, almeno l'85 % dei materiali viene riciclato e almeno il 95 %, compreso il riciclaggio termico, viene riciclato in conformità ai requisiti di legge (Direttiva europea sui veicoli fuori uso ELV 2000/53/CE).

Il riciclaggio dei veicoli da rottamare avviene in aziende di smontaggio riconosciute. Il BMW Group e le sue società distributrici nazionali offrono un servizio di riciclaggio con oltre 2.800 centri di raccolta in 30 paesi. I quattro livelli di riciclaggio comprendono il ritiro controllato, il pretrattamento, lo smontaggio e il riciclaggio del veicolo restante.

I dati su questa pagina non fanno parte dell'ecobilancio.

5. RESPONSABILITÀ SOCIALE NELLA CATENA DI FORNITURA.

Il rispetto di standard ambientali e sociali nella rete dei fornitori è l'obiettivo dichiarato del BMW Group. Ciò comprende il rispetto dei diritti umani e la diligenza dovuta nell'estrazione delle materie prime.

Acquistiamo componenti, materiali e prestazioni a livello internazionale da molte località di produzione e consegna. Trasmettiamo gli obblighi di diligenza sociale ed ecologica dovuta come parte di standard di sostenibilità vincolanti a livello contrattuale. Affrontiamo i rischi individuati nella rete con misure di prevenzione, responsabilizzazione e rimedio, che sono ancorate in modo sistematico nei nostri processi.

Nel caso di catene di fornitura critiche l'obbligo di diligenza aziendale costituisce una sfida particolare. Ciò è imputabile alla complessa rintracciabilità delle risorse naturali al fine di garantire la necessaria trasparenza. Per questa ragione acquistiamo il litio per la BMW i5 eDrive40 direttamente dai produttori. Si tratta di un componente chiave che mettiamo a disposizione dei fornitori. In questo modo l'origine e i metodi di estrazione delle materie prime sono completamente rintracciabili. Gli standard ambientali e sociali diventano più trasparenti. Ulteriori informazioni sul controllo e il miglioramento degli standard ambientali e sociali nell'estrazione e nel trattamento delle materie prime sono disponibili qui: https://www.bmwgroup.com/en/sustainability/our-focus/environmental-and-social-standards/supply-chain.html

I dati su questa pagina non fanno parte dell'ecobilancio.

6. VALUTAZIONE E CONCLUSIONI.

La BMW i5 eDrive40 rappresenta la scelta di una berlina executive totalmente elettrica. Per una presenza sportiva e un office mobile. Per una mobilità divertente e fonte d'ispirazione.

L'ecobilancio della BMW i5 eDrive40 è stato certificato dall'Istituto indipendente TÜV Rheinland Energy & Environment GmbH. Mostra che il BMW Group attua provvedimenti per ridurre l'impatto sull'ambiente.

